https://www.dusuniot.com/

Developing an application communicating with BLE

devices on Dusun’s gateways

Bluetooth Low Energy (BLE) is intended to provide considerably reduced power
consumption and cost while maintaining a similar communication range with Bluetooth.
BLE is suitable for loT applications. Many operating systems support BLE and thus BLE is
very popular. The Dusun loT gateways support most connectivity protocols including BLE
(4.x/5.0/Mesh), ZigBee 1.2/3.0, Z-Wave, TCP/UDP, etc. Users can connect the gateway
with various BLE devices. As the Dusun gateway is running based on the Linux system,
how to implement an application over Bluez stack to ‘talk’ with BLE devices on Dusun
gateways will be presented here.

1. Product Feature Summary

- System:

- OS: Linux@ OpenWrt

- Processor: MTK7620A (MIPS24KEc(580MHZ))

- RAM: 128MB

- Flash: 64MB

- Wireless protocol :

- LTE-M1

- Bluetooth Low Energy

- Wi-Fi

Tel : +86057185365259 Add : Room 801, Block A, Wantong Center, 189
Daguan Road, Gongshu District, Hangzhou, Zhejiang,China

Dusun’

https://www.dusuniot.com/

Zigbee3.0

- Z-Wave

Ethernet

- WLAN

- LAN

2. System block diagram
Dusun’s gateways run Linux OpenWrt system. As depicted in figure 1, Linux support
BLE protocol through running the Bluez stack. BlueZ provides support for the core
Bluetooth layers and protocols. It is flexible, efficient and uses a modular
implementation. The BlueZ stack supports all core Bluetooth protocols and layers

now. Users can write BLE applications using Bluez APIs to manipulate BLE devices.

Ember Gw/3 Z Wave Customizatio
- MQTT Client BT App

Zigbee3.0 App App n App

UBUS , DBUS, Message Bus in OpenWrt

Z-Wave

OpenWrt System
H i Protocol

Figure 1 Dusun Gateway system architecture

Tel : +86057185365259 Add : Room 801, Block A, Wantong Center, 189
Daguan Road, Gongshu District, Hangzhou, Zhejiang,China

Dusun

https://www.dusuniot.com/

3. System configuration

Gateway -

pC 5V/2A

Figure 2 gateway->PC connection diagram
The gateway can be configured following these steps:
1. Connect the gateway to the PC and power up, according to figure 2;
2. Open a web browser on PC, Input Gateway IP Address: 192.168.66.1 ; Enter the

username and Password (Username: root Password: root) , login to the gateway;

&« O n P LA LGN

Dusun

Authorization Required

Please enter yaur username and password
Usemame

Pazsword

O Login @ Resst

3. Make system configuration at the system menu, the timezone, password and others can be
revised here.

Here you can configure t ce like its hostname or the timezone

System Propertig

I aral Tima Thilan 1 0-28-32 1470 @ Svne with hrowser

4. Configure network at the network sub-memu.

Tel : +86057185365259 Add : Room 801, Block A, Wantong Center, 189
Daguan Road, Gongshu District, Hangzhou, Zhejiang,China

Dusun

https://www.dusuniot.com/

Dusun

Interface Overview

Network Status Actions
LaN Uptime: 0h 47m 324 - =
 Con ol ° Stop £ Edit] Delet
MAC-Address: 30.AE.78.2B:4D:68 N S o o St
S
it
WAN Uptime: 0n 0m 0s e - ~ =
MAC-Address: 30-AE7B:2B:40.60 ¥ Connect | @ Swop 4 Edit #| Delate
aih,
Lo & Connset @ Swp 4 Edit =] Delate
@i, ks
L ¥ Connect @ Swp 4 Edi ®| Delste
IgwanPPP

"] Add new |ntrfacs

Global network options

P8 ULA-Prefix

I

WAN WANG WANPPP

'ou cin bridge several intarfaces by §
s0 use VLAN notation INTERFACE . VLAM

ing tha “bridge intfarfaces” fisld and entar tha names of sevaral

{e.g. etha.1)

Advanced Satings Ehysical Seltings Firawall Settngs

0AE: T8:28:40:68

WPvd: 10 124
IPv6: 1d02.cf79.068.1/60

Protocol
1P address
1P natmask
Pvd gateway

IPvd broadcast

Use custam DNS servers = |

When the configuration is completed please reboot the gateway. Then users can log in

the gateway by inputting the following commands in a terminal, and then input your

password. IP_addr is the IP addr which user configured above. The default IP is

192.168.66.1. The below figure shows the login scene.

ssh root@IP_addr

Tel : +86057185365259 Add : Room 801, Block A, Wantong Center, 189

Daguan Road, Gongshu District, Hangzhou, Zhejiang,China

https://www.dusuniot.com/

-Inspiron-5577:~5 ssh root@192.168.66.1
66.1's password:

BusyBox v1.23.2 (2019-63-12 19:08:20 CST) built-in shell (ash)

ER (Chaos Calmer, r47202)

Shake with a glassful
riple Sec of broken ice and pour
3/4 oz Lime Juice unstrained inte a goblet.
1 1/2 oz Orange Juice
1 tsp. Grenadine Syrup

4. Connecting a BLE sensor with Bluetoothctl

The Dusun gateway is installed Bluez version v5.50. Bluez has provided many
command utilities for controlling BLE devices. Bluetoothctl is the main command for
configuring Bluetooth devices on Linux. Users can use this utility to know more about
their BLE devices and are familiar with the connecting steps. An oximeter BLE sensor
is used for living example. The steps for connecting and managing the oximeter BLE
sensor is shown below:

1. Open Bluetoothctl and scan Bluetooth devices to find the oximeter sensor(whose

name is my oximeter).

root@usun:~# bluetoothctl
Agent registered
Lue |# power on
Changing power on succeeded
[CHG] Controller ©0:02:5B:00:A5:A5 Powered: yes
[bluet]# scan on
Discovery started

[CHG] Controller CC:2F:71:E1:9C:21 Discovering: yes
W] Device A4:C1:38:DC:4D:C5 My Oximeter

Device 53:71:73:C 2:51 53-71-73-C7-82-51
[blue |# scan off
Discovery stopped

2. Pair the sensor and connect it.

Tel : +86057185365259 Add : Room 801, Block A, Wantong Center, 189
Daguan Road, Gongshu District, Hangzhou, Zhejiang,China

Dusun

https://www.dusuniot.com/

J# pair A4:C1:38:DC:4D:C5

httempting to pair with A4:C1:38:DC:

[CHG] Device A4:C1:38:DC:4D:C5 Connected:

4D:C5
yes

Failed to pair: org.bluez.Error.AuthenticationFailed

[CHG] Device A4:C1:38:
ietooth]# connect
Attempting to connect
[CHG] Device A4:C1:38:
Connection successful
[NEW] Primary Service

DC:4D:C5

to A4:C1:38:

Connected:
A4:C1:38:DC:4D:C5

DC:4D:C5 Connected:

no

:4D:C5
yes

Jorg/bluez /hci@/dev_A4 C1_38_DC_4D_C5/servicedoos
0000 180a-0000-1000-8000-0080579b34fb

Device Information
] characteristic

Jorg/bluez/hci@/dev_A4_C1_38_DC_4D_C5/service@@0s/chareees
00002a50-0000-1000-8000-00805F9b34fb

PnP ID
1] Primary Service

forg/bluez /hci®/dev_A4_C1_38_DC_4D_C5/servicef@sb

cdeacbB0-5235-4cO7-8E
Vendor specific

NEW] Characteristic

-93a37ee6b86d

forg/bluez /hci®/dev_A4 C1 38 DC_4D_C5/service@86b/char®ebc
cdeacb81-5235-4c07-8846-93a37ee6b86d

Vendor specific
W] Characteristic

Jorg/bluez/hci®/dev_A4 C1_38_

DC_4D_C5/service®®6b/chareeie

cdeacbB82-5235-4c07-8846-93a37ee6b86d

Vendor specific

3. List attributes and select the characteri

stic for getting data. Use select-attribute

and then notify on, the data will be pushed to the command line as the below

figure shows.

[X # menu gatt
Menu gatt:
Available commands:

1ist-attributes [dev]
select-attribute <attribute/UuID>
attribute-info [attribute/UUID]
read

write <data=xx xx ..
acquire-write
release-write
acquire-notify
release-notify
notify <onjfoff>
register-application [UUID ...
unregister-application

>

register-service <UUID>

unregister-service <UUID/object>
register-characteristic <UUID> <Flags=read,write
unregister-characteristic <UUID/object>
register-descriptor <UUID> <Flags=read,write...>
unregister-descriptor <UUID/object>

list-attributes
Primary Service
Jorg/bluez/hcie/dev_A4_C1_38_DC_4D_C5/se
0000180a-0000-1000-8000-00805f9b34fb
Device Information

Tel : +86057185365259

List attributes

Select attribute

Select attribute

Read attribute value

Write attribute value

Acquire Write file descriptor

Release Write file descriptor

Acquire Notify file descriptor

Release Notify file descriptor

Notify attribute value

Register profile to connect

Unregister profile

Register application service.

Unregister application service
snotify...> Register application characteristic

Unregister application characteristic

Register application descriptor

Unregister application descriptor

Return to main menu

Display version

Quit program

Quit program

Display help about this program

rvice@oes

Add : Room 801, Block A, Wantong Center, 189

Daguan Road, Gongshu District, Hangzhou, Zhejiang,China

https://www.dusuniot.com/

attribute-info forg/bluez/hci®/dev_A4_C1_38_DC_4D_C5/servicenes
- Vendor
g6d
C_4D_C5/serviceegeb

v_A4 C1_38 DC_4D_C5/service®
C tify on
rlbute F\rg:bLUtL“ Lufde_ul C1_38_DC_4D_C5/servicedodb/char@edc Motifying: vyes
arted
ribute fLrg;bluegfhrln /dev_A4_C1_38_DC_4D_C5/serviced@db/chargedc value:

c Value:

/_A4_C1_38_DC_4D_C5 8b/chareeec Value:

/_ A4 _C1_38_DC_4D_ 000b/chargedc Value:

r\hutP forg;bluez'hr\n /dev_A4 C1_38_DC_4D_C5/serviced@db/chargesc value:
41 62 25 -Ab%

After these steps, user can know something about the sensor and its BLE profiles which
can also be seen from the sensor user manual. Then we will show how to program by
using Bluez Dbus APIs to get the sensor data.

5. A sample: communicate with an oximeter BLE sensor using

Bluez

We have provided a sample application to get the BLE oximeter sensor data. They include
the Bluez Dbus library, and several ¢ program files. The oximeter sensor operating
functions is contained in the Oximeter.c. The main function in the main.c is shown as

below.

int main(int argc, char *argv[])

{
GError *error = NULL;
GDBusClient *client;
Tel : +86057185365259 Add : Room 801, Block A, Wantong Center, 189

Daguan Road, Gongshu District, Hangzhou, Zhejiang,China

https://www.dusuniot.com/

INIT_LOG("HL");

/*init global data for bluez operation*/

init_global_data();

init_curl();

[*register the drivers you have written*/

load_healt_drivers();

[*create a main loop object*/

main_loop = g_main_loop_new(NULL, FALSE);

[*set up the dbus connection*/

dbus_conn = g_dbus_setup_bus(DBUS_BUS_SYSTEM, NULL, NULL);

[*create a bluez client for dbus connection object*/

client = g_dbus_client_new(dbus_conn, "org.bluez", "/org/bluez");

[* set connect/disconnect/signal handler function*/

g_dbus_client_set_connect_watch(client, connect_handler, NULL);

g_dbus_client_set_disconnect_watch(client, disconnect_handler, NULL);

g_dbus_client_set_signal_watch(client, message_handler, NULL);

[* set proxy handlers*/

g_dbus_client_set_proxy_handlers(client, proxy_added, proxy_removed,

property_changed, NULL);

[* set ready */

Tel : +86057185365259 Add : Room 801, Block A, Wantong Center, 189
Daguan Road, Gongshu District, Hangzhou, Zhejiang,China

Dusun

https://www.dusuniot.com/

g_dbus_client_set_ready_watch(client, client_ready, NULL);
/*running in a loop*/

g_main_loop_run(main_loop);

[*release the resources*/

g_dbus_client_unref(client);

dbus_connection_unref(dbus_conn);

g_main_loop_unref(main_loop);

return O;

Users should note the function load_healt_drivers();, in which the function

register_health_driver(&Oximeter_driver) is invoked to register the callback functions

which process the upcoming events and then get the data the sensor reported. The

UUID_Oximeter_SERVICE is the primary service that its characteristic can be read to get

oximeter values.

The HealthDriver and BluetoothDeviceCallbacks is defined as

typedef struct HealthDriver_

char * name;

Tel : +86057185365259 Add : Room 801, Block A, Wantong Center, 189
Daguan Road, Gongshu District, Hangzhou, Zhejiang,China

https://www.dusuniot.com/

char * service_uuid;

struct BluetoothDeviceCallbacks_ * callbacks;

}HealthDriver;

typedef struct BluetoothDeviceCallbacks_

void (*init) (BluetoothDevice * btdev);

void (*exit) (BluetoothDevice * btdev);

void (*scan_found)(BluetoothDevice * btdev);

void (*connect_state_changed) (BluetoothDevice * btdev, bool connected);

void (*service_added) (BluetoothDevice * btdev, GattService * service);

void (*characteristics_added) (BluetoothDevice * btdev, GattCharacteristic *

characteristics);

void (*characteristics_notify)(BluetoothDevice * btdev, GattCharacteristic *

characteristics,

const unsigned char * value, int len);

/Ivoid (*property_changed)();

} BluetoothDeviceCallbacks;

In Oximeter.c a BluetoothDeviceCallbacks instance and a HealthDriver instance are

defined:

static BluetoothDeviceCallbacks Oximeter callbacks =

Tel : +86057185365259 Add : Room 801, Block A, Wantong Center, 189
Daguan Road, Gongshu District, Hangzhou, Zhejiang,China

Dusun

https://www.dusuniot.com/

{
.init = Oximeter_init,
.connect_state_changed = Oximeter _connect_state_changed,
.scan_found = Oximeter _scan_found ,
.characteristics_added = Oximeter_characteristics_added,
.characteristics_notify = Oximeter_characteristics_notify,

B

#define UUID_Oximeter_SERVICE "cdeacb80-5235-4c07-8846-93a37ee6b86d"

HealthDriver Oximeter_driver =

{
.name =" Oximeter detector",
.service_uuid = UUID_ Oximeter_SERVICE,
.callbacks = &Oximeter _callbacks,

B

Oximeter_init,Oximeter_connect_state_changed,Oximeter_scan_found,

Oximeter_characteristics_added, Oximeter_characteristics_notify are functions to process

connection events when the sensor is connected to the gateway.

Oximeter_characteristics_notify process the data notified. Users should write their own

callback functions according to their sensor characteristics to control the sensor.

Tel : +86057185365259 Add : Room 801, Block A, Wantong Center, 189
Daguan Road, Gongshu District, Hangzhou, Zhejiang,China

Dusun

https://www.dusuniot.com/

6. Run the oximeter sensor sample on the gateway
1) Get the Openwork toolchain and copy it to a Linux PC. Get the cross compile
OpenWrt-Toolchain from Dusun, whose name is
openwrt-sdk-ramips-mt7620_gcc-4.8-linaro_uClibc-0.9.33.2. Linux-x86_64.tar.bz2.
Decompress the downloaded OpenWrt Toolchain to a local folder (E.g.:
home/software/OpenWrt-SDK).
2) Compiled the attached code files.
View our GitHub for the code sampile:
https://github. com/dusuniot/Dusun BLE Code Sample
BLE_code_sample_for_development_on_dusun_gateway
Copy the above code file to the Linux PC and decompress it to a folder (E.g.:
home/software/test). Open ./BLEsample/example/ folder, and edit the Makefile file to
revise the CROSSTOOLDIR to the OpenWrt toolchain directory you created above.
This is depicted in Figure 3.
*Makefile
ROOTDIR=S$(shell pwd)
WORKDIR=5(ROOTDIR) /build
ARCH = MT7620
ifeq (S(ARCH) MT7620) i .
IClROSS mkpsel-op;n\nrt-\inux-
export STAGING_DIR t= $(CROSSTOOLDIR)/staging_dir
export PATH t= S{PATH):5(STAGING_DIR)/toolchain-mipsel_z24dkec+dsp_g
CROSS_CFLAGS 1= -IS(CROSSTOOLDIR)/staging_dir/toolchain-mipsel_24ke
CROSS_CFLAGS += -1$(CROSSTOOLDIR)/staging_dir/target-mipsel_24kec+d
CROSS_CFLAGS += -I5(CROSSTOOLDIR) /staging_dir/target-mipsel_24kec+d
CROSS_CFLAGS += -I$(CROSSTOOLDIR)/staging_dir/target-mipsel_24kec+d
CROSS_CFLAGS += -I$(CROSSTOOLDIR)/staging dir/target-mipsel_24kec+d
CROSS_LDFLAGS := -LS(CROSSTOOLDIR)/staging_dir/toolchain-mipsel_24ke
CROSS_LDFLAGS += -LS(CROSSTOOLDIR)/staging_dir/target-mipsel_24kec+d
endif
all : test
Srcs = $(ROOTDIR)/src/main.c
sSrcs += S(ROOTDIR)/src/bp.c
srcs += ${ROOTDIR)/src/curl.c
sSrcs += S({ROOTDIR)/src/dev.c
Tel : +86057185365259 Add : Room 801, Block A, Wantong Center, 189

Daguan Road, Gongshu District, Hangzhou, Zhejiang,China

https://github.com/dusuniot/Dusun_BLE_Code_Sample

Dusun

https://www.dusuniot.com/

Figure 3 change the CROSSTOODIR path

Inspiron-

d for guojie

: File
-¢ fhome/guojie/software
me fguojie/Software/Openkrt

sample/src/mo
home fguojie/s
dir/target-mipsel_2

BLE=amp1rfhu11d!s
| 1 /BLEsample /buil
malnloop.o
tware/BLEs

s discour
e/Softwar

Figure 4 the test application compilation

Then open a terminal on the Linux PC, and type the following commands:

cd BLEsample; sudo make

Finally, the test bin file which can be run in the gateway has been compiled. (Figure

4).

3) Copy the compiled test bin file into the gateway and run it. There are some ways one

can do it. Under Linux PC, you can use SCP command (scp local_file

remote_username @remote_ip:remote_folder) to do it. Make sure the gateway is

connected to the same router with PC, then run the following commands:

scp test root@192.168.66.1:/root

$ scp test root@192.168.66.1:/root

180% 141KB 131.7

[

Tel : +86057185365259 Add : Room 801, Block A, Wantong Center, 189
Daguan Road, Gongshu District, Hangzhou, Zhejiang,China

mailto:root@192.168.66.1:/root

Dusun

https://www.dusuniot.com/

t@

BusyBox v

- I
1 __1_
|_ IWTIRELE

F3:56
entManageri
rofileManager1

:.bluez. Ad isingManageri

Then remote login to the gateway using SSH commands or SSH client (windows:
putty or SecureCrt) and run the copied bin file. The login password can be revised
following the configuration steps in the above sections. Finally, we power up the
oximeter device and run the test file, we can see the data the oximeter notified to the
program as the figure 5 shows. The data can be analyzed according to its munual.

Figure 6/7 show the sensor and gateway for testing respectively.

: Oximeter_characteristics_notify:
Notify started
Oximeter_characteristics_notify:
Oximeter_characteristics_notify:
HL[3672]: Oximeter_characteristics_notify: 8

HL[3672]: oximeter_characteristics_notify:
HL[3672] imeter_characteristics_notify:
HL[3672]: Oximeter_characteristics _notify:

Figure 5 the printed messages when notify callback functions invoked

Tel : +86057185365259 Add : Room 801, Block A, Wantong Center, 189
Daguan Road, Gongshu District, Hangzhou, Zhejiang,China

Dusun

https://www.dusuniot.com/

Figure 6 the oximeter device for testing

Figure 7 the Dusun Gateway for testing

Tel : +86057185365259 Add : Room 801, Block A, Wantong Center, 189
Daguan Road, Gongshu District, Hangzhou, Zhejiang,China

	Developing an application communicating with BLE d
	1.Product Feature Summary
	2.System block diagram
	3.System configuration
	4.Connecting a BLE sensor with Bluetoothctl
	5.A sample: communicate with an oximeter BLE sensor
	6.Run the oximeter sensor sample on the gateway

